4.2 Exponential Functions

Exponential Functions: $f(x)=b^{x}$ or $y=b^{x}, b>0$ and $b \neq 1, x$ is \square

* Graphing Exponential Functions

Ex. Graph each function by making a table or coordinates.
(a) $f(x)=3^{x}$

\boldsymbol{x}	$\boldsymbol{y}=\mathbf{3}^{\boldsymbol{x}}$
-2	
-1	
0	
1	
2	

Domain: \qquad
Range: \qquad
x-intercept: \qquad
y-intercept: \qquad
H.A.: \qquad
(b) $f(x)=\left(\frac{1}{3}\right)^{x}$

\boldsymbol{x}	$\boldsymbol{y}=(\mathbf{1} / \mathbf{3})^{\boldsymbol{x}}$
-2	
-1	
0	
1	
2	

Domain: \qquad
Range: \qquad
x-intercept: \qquad
y-intercept: \qquad
H.A.: \qquad
(c) $f(x)=3^{-x}$

\boldsymbol{x}	$\boldsymbol{y}=\mathbf{3}^{-\boldsymbol{x}}$
-2	
-1	
0	
1	
2	

Domain: \qquad
Range: \qquad
x-intercept: \qquad
y-intercept: \qquad
H.A.: \qquad

Properties of Exponential Graphs of the Form $f(x)=b^{x}:(\mathrm{p} .416)$

1) Domain: \qquad
Range: \qquad
2) The point that all graphs pass through: \qquad
x-intercept: \qquad
y-intercept: \qquad
3) $b>1: f(x)=b^{x}$ is an \qquad exponential function.
4) $0<b<1$: $f(x)=b^{x}$ is an \qquad exponential function.
5) One-to-One Function; has an inverse function
6) Horizontal Asymptote: \qquad

An increasing exponential function is also called an exponential growth function. A decreasing exponential function is also called an exponential decay function.

Transformations of Exponential Functions

Ex. Given the graph of $f(x)=3^{x}$.
i) Use the transformations of this graph to graph the given function.
ii) Give equations of the asymptotes.
iii) Use the graphs to determine each function's domain and range.
(a) $f(x)=3^{x}+2$
(b) $f(x)=3^{x-1}$

H.A.: \qquad
Domain: \qquad
Range: \qquad

H.A.: \qquad
Domain: \qquad
Range: \qquad

* The Natural Base e

$$
e=\left(1+\frac{1}{n}\right)^{n} \approx 2.718281827 \ldots \quad \text { as } n \rightarrow \infty
$$

$\boldsymbol{e}=$ irrational number
Natural Exponential Function: $f(x)=e^{x}$

The graph of $f(x)=e^{x}$ has the same characteristics as any other exponential functions with base " b ".

Ex. Evaluate $f(x)=e^{x}$ for $f(\sqrt{7})$ and $f(-3)$.
Round to 4 decimal places.

Compound Interest

Compound Interest: interest computed on your original investment as well as on any accumulated interest.

Simple Interest: $I=P r t$

Formulas for Compound Interest

1.) Compound Interest: Compound interest is paid n times a year.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

2.) Continuous Compounding: the number of compounding periods increases infinitely.

$$
A=P e^{r t}
$$

\boldsymbol{A} : Accumulated amount of money invested after t years
\boldsymbol{P} : Principal (original amount invested)
r : Annual Percentage (Interest) Rate
t : years
\boldsymbol{n} : Compounding Periods per year

Annually	$n=1$
Semi-annually	$n=2$
Quarterly	$n=4$
Monthly	$n=12$
Weekly	$n=52$
Daily	$n=365$

Ex. Find the accumulated value of an investment of $\$ 5000$ for 10 years at an interest rate of 6.5% if the money is
a) compounded quarterly
b) compounded continuously

Ex. (\#56) The population of Canada in 2010 was approximately 34 million with an annual growth rate of 0.804%. At this rate, the population $P(t)$ (in Millions) can be approximated by $P(t)=34(1.00804)^{t}$, where t is the time in years since 2010. (Source: www.cia.gov)
(a) Is the graph of P an increasing or decreasing exponential function?
(b) Evaluate $P(0)$ and interpret its meaning in the context of this problem.
(c) Evaluate $P(5)$ and interpret its meaning in the context of this problem. Round the population value to the nearest million.

